
Capstone Whitepaper - Auction Price
Prediction & Image Features

Bingying Liu, Yifei Wang

Abstract​ - We propose a multi-layer price prediction model that concatenates a pretrained
Convolutional Neural Network (CNN) image model, preprocessed tabular data, text
representations and other features to predict eventual sales price. We benchmark performance
of different hyperparameters and optimize the final price prediction with mean absolute error
$2541.85 (19.06%). We conduct quantitative feature importance analysis of all the interpretable
features by giving a importance ranking. We also implement two qualitative network attention
algorithms on images (image attention) by color coding important areas or pixels. These
interpretations could help our clients understand how important each feature is to the final price.
People with professional knowledge could potentially extract consistent recommendation from
the image attentions and optimize the background of images.

1. Project Background and Goals

Background about Purple Wave
Our partner is Purple Wave, the second largest online heavy machinery auction firm. Its auction
acts like “Ebay”, but focuses on agricultural and construction equipment. Purple Wave has huge
volumes of past transaction records and equipment images, in which they find values for
learning what aspects of the equipment conditions are affecting the final auction most. Ideally
we could build a dynamic price prediction model that jointly considers both the tabular
information (make, year, mileage, etc.) and the interpretable and adjustable features extracted
from images. In this way, Purple Wave could maximize their profits, by tuning the listed
information of equipment (e.g. picking a cover image that looks great) and maximizing the
expected final price.

We use images of skid steer, a small piece of construction equipment primarily used for digging,
and auction information in our project, because these machines are auctioned most frequently.
We can utilize the great amount of skid steer data to build the models and easily adapt them to
other equipment.

Importance of Interpretable Price Estimation

Price estimation is crucial to the auction business, because buyer’s premium is a main source of
their revenue. Buyer’s premium is usually a set percentage of the final price, paid by the buyer
to the auction company as a service fee. The more expensive the sold item, the more money

the auctioneer will make from charging the buyer's premium. Accurately estimating the selling
price in advance could help auction companies optimize their resources to arrange the auction
so that similar items won’t be sold at the same time. It could also help them advertise
accordingly and maximize their revenue.

In addition to price prediction, feature interpretability is also crucial to auction business. Knowing
which features are important to the final price, auction companies could extract patterns and
formulate an optimized way to improve customer satisfaction. For example, professional
photographers of Purple Wave could give an image more visual appeals, or promote/advertise
items by emphasizing certain features. All these approaches could potentially increase
customer’s satisfaction by achieving a higher auction price.

Overview of Findings
In this project, we experiment on and compare different ways of generating image features.
Machine learning methods perform poorly on generating image features without annotations,
while a proper way of image processing could extract meaningful and significant features.
Another great way to gather image features is using Amazon Mechanical Turk (MTurk). In terms
of generating image features, we suggest using MTurk or other human annotations to gather
meaningful features.

As for the price prediction model, we use a neural network to build a flexible end2end price
prediction model taking skid steer images, preprocessed text comments and all other vehicle
features as inputs. We experimented on different combinations of and hyperparameters the
model structures and finally reached a mean absolute error of $2541.85 (mean absolute
percentage error of 19.06%) for predicting unseen data.

We also conduct quantitative feature importance analysis on all numerical vehicle features and
qualitative analysis on raw images. We find that the vehicle body color and cleanliness play an
important role in price prediction. Thus, we suggest cleaning the vehicle before taking photos.

2. Data Summary
We have two data sources provided by Purple Wave: ​6197 skid steer images​ and ​a
spreadsheet​ on predictors and target selling price of 8172 skid steers. Because bidded items
are usually pulled off from websites within several days, not all images could be retrieved, which
results in a mismatch between the number of images and that of tabular information. However,
all except one image could be matched with tabular information using a combination of item id
and source. Both images and tabular data were collected by Purple Wave from four different
sources: rbauction, ironplanet, purple wave and bigiron.

Key usage of tabular data is summarized below in ​Table 1​.

Variables for
modelling

Variables
(duplicated/unused)

Variables to
identify images

Year Item Id Source

Make Product Name Item#

Hours final Year of sold date

Winning Bid Month of sold date

Bucket Date of sold date

Engine

Tires

Transmission

Age at sale

Details remaining
(Remaining details

from listing less
(bucket, engine,

tires, trans))

Table 1. Summary of variables in tabular data

Data Preprocessing
After exploring the raw data, we found that certain preprocessing procedures are necessary
before feeding them to a machine learning model. Our preprocessing pipeline includes
removing illegal rows (defined below), imputing missing values, transforming numerical values,
normalizing numerical values, text cleaning, text modeling and train-validation splitting. Details
and explanations for those steps may be found in the Appendix 1: Exploratory Data Analysis.

- Removing illegal rows
Illegal rows are rows with duplicate id or without matched images. We remove all the rows with
duplicate “Item Id” otherwise we are not able to distinguish between them. Then we remove
rows without matched images. We also found some corrupted image files so we also removed
the corresponding rows.

- Imputing missing values

We found missing values in “Hours final” and “Age at sale”. For each of them, we impute these
missing values with the corresponding median, and add a new binary variable indicating
whether the original value is missing or not.

- Transforming numerical values
Some variables, such as “Winning bid” and “Hours final”, have great variance, which is generally
not good for machine learning models. Thus, we transform these variables into log-scale.

- Normalizing numerical values
All these variables come from different ranges and scales. Some range from 0 - 42 (Age at
sale), while others range from 5000 to 70000 (Winning bid in US Dollars). These will also cause
difficulty in training an accurate model, so we normalize them to a standard scale.

 - Categorical variable cleaning and merging
Variable “Make” is cleaned by inspecting and merging similar-looking brands together into one
brand (for instance, treat “bob-cat” as “bobcat”) and combining brands with less than 20 rows of
data together into a single category “Others”, which could enable “Make” to be less imbalanced.

- Text cleaning
Text that inputs into VADER’s sentiment analyzer are comments that exceed 100-character in
length (from ‘‘Engine’, ‘Tires’, ‘Transmission’ and ‘Bucket’​) ​since we assume those texts are
professional evaluations instead of machine specs. We use compound score as the output from
VADER, which is a score from -1 (most extreme negative) to 1 (most extreme positive). We
manually assign a compound score of 0 to comments that are less than 100 characters, as we
assume shorter texts in the majority of cases are a combination of machine specs and its serial
number, which has a neutral sentiment.

- Text modeling
We train different text embedding on the ‘details_remaining’ column based on the source of the
data (rbauction, bigiron, PW and ironplanet) since the context looks very different based on
source. Texts are decapitalized, punctuation removed and stemmed before inputting into
fasttext to generate word embeddings. Sentence embeddings are calculated by summing word
embedding in each sentence and average according to number of words.

- Train-validation splitting
Finally we split the whole dataset into a training set and a validation set. We set the portion to
be 70% for training and 30% for validation. We also freeze the splitting to make sure that all the
models will learn from the same training data and be tested on the same validation data.

From exploratory analysis ​(Appendix 1)​, we have predictors available directly from tabular data
which has relationship with the response variable: winning_bid :
- Hours_final
- Age_at_sale

- Make
- Month of sold date
The variables above need minimum amount of preprocessing and have strong predictability
power as Purple Wave is currently using for their own model. However, there are more factors
that contribute to the attractiveness of a skid steer than structured numerical data, such as
image and text descriptions on the web. In this section, we hope to use well-established rules
from research to extract useful features from unstructured data, as well as crowdsource human
knowledge to annotate image features.

Feature Engineering
On the Purple Wave website, each equipment has an enlarged cover image showing general
looks of the equipment from the front view. This cover image would have greater influence on
the buyer’s first feelings than other detailed images. Buyers will not even have a chance to see
the detailed images if the cover image is not attractive enough. Thus, one of the main goals of
our project is to determine what aspects of the cover image could influence product
attractiveness and how important those relevant aspects are regarding eventual sales price
prediction. In addition, suggestions could be made to Purple Wave on how to improve cover
image to attract more traffic.

1) Image Colorfulness
An important external factor that influences customer’s perception of a product is color
saturation, or “happiness” of the image. For example, drawing on social cognition theory and
experimental studies, Schnurr​[1]​ concluded that customers perceive products as more attractive
when they are put in attractive contexts.

‘Happiness’ of the image in our case, can be broken down into subcategories, for instance
weather of the image-taking day (i.e. sunny,cloudy, snowy,etc), background of the image (i.e.
inside garage, outside under blue sky, etc) and quality of photos taken (i.e. overexposed,
underexposed,etc). In addition, shade variants of equipment's color could also be important.

In the paper “Measuring colourfulness in natural images”, Haslera and Susstrunk​[2]​ asked 20
participants to rate images using 7 categories of colorfulness. This survey was conducted on 84
images and a simple metric was proposed that correlated to 95.3% of the experiment data. The
metric uses opponent color space representation, which is the difference between red and
green as well as yellow and blue channels (​Figure 1​).

Figure 1. Colorfulness Metric

This is a general metric which essentially includes almost all subcategories of ‘Happiness’
mentioned above. As we can see in ​Figure 2.a,b​, we sampled 50 images, calculated their
colorfulness scores and sorted them in descending and ascending order.

a. 10 most colorful images

b. 10 least colorful images
Figure 2. Samples of image colorfulness

In the most colorful images, skid steers usually have a background of blue skies, pastures or the
color of “yellow” is quite bright. Whereas in the least colorful images, skid steers’ backgrounds
involve snow and cloudy weather or the color of skid steers aren’t quite bright. In the exploratory
data analysis (EDA) section ​(Appendix 1)​, we can see the relationship between price of skid
steers and colorfulness scores. Although there is not a strong positive correlation between final
price and colorfulness in EDA because of other dependent variables, we will use the nested-f
test later in linear regression to prove its significance towards price prediction.

Although colorfulness score is simple and effective, we still would like to break down this score
into more interpretable subcategories, which will be implemented in the annotation and transfer
learning section.

2) Text Sentiment

Apart from the images, text descriptions of the equipment are also alongside on the auction
page. Purple Wave has scraped the text data and stored them inside different columns in the
spreadsheet. Although text might not have as strong a first impression as the cover image, we
still believe that text could convey extra information that couldn’t be expressed by images.
Buyers could be benefited by knowing machine specs, professionals’ evaluation and etc.

As we explored the corresponding columns and found that the seemingly “categorical”
variables, specifically ‘Engine’, ‘Tires’, ‘Transmission’ and ‘Bucket’, actually contain more than
hundreds of unique categories (out of 6k+ data), treating them as “categorical” instead of
unstructured text will dilute the effectiveness of the variable itself (Appendix 1: Text Data). Also,
since the tabular dataset is collected from four different sources and some of the comments
contain more than 100 characters, it’s technically easier and reasonable to extract sentiments
from text. Sentiment in price prediction’s context refers to identifying positive or negative
sentiment within text that could potentially drive sales price.

We use VADER (Valence Aware Dictionary and Sentiment Reasoner)​[3]​, a lexicon and
rule-based sentiment analysis dictionary that has been shown to have good performance on
product review dataset​ [3]​. VADER’s advantage is that it takes into account preceding trigrams,
which means negation and conjunction situations can be dealt with properly. We specifically use
the compound score, which is a metric that calculates the sum of all the lexicon ratings to
extract sentiment from ‘Engine’, ‘Tires’, ‘Transmission’ and ‘Bucket’ columns. In the feature
importance section, we’ll see how these sentiment ratings could impact the sales price. One of
the disadvantages of VADER is that since each word’s sentiment is hard-coded, a word like
“charged” has a neutral meaning in our dataset but is given a negative sentiment in the
dictionary. We manually modified several words’ lexicon rating, but this dictionary needs to be
further explored and maintained once new data comes in.

Figure 3. Output scores from VADER using ‘Engine’ column

Let’s walk through an example of the output from VADER. For the first sentence, VADER
identifies “damaged” as a negative word while it doesn’t mark “engine knocks” as negative. The

reason is that “knock” itself is a neural word; only by treating “engine knocks” as a phrase can it
have specific meaning. However, for a lexicon-based library, it has its own limitations. Similarly,
in the second sentence, “replaced” here could have positive sentiments. However, “replaced”
could actually have different sentiments under different circumstances. Again, VADER is unable
to detect the context of a word by its library nature.

3. Image Annotation (MTurk)
Since it’s generally hard to extract interpretable image features by image processing techniques
alone and colorfulness scores incorporate so many aspects of the pictures, we resorted to a
crowdsourcing platform to gather human annotations and break down the score.

Amazon Mechanical Turk is a popular crowdsource platform for computer vision people to get
image labels, bounding boxes of targets, etc. It’s a cheap and fast way to collect data. Improved
upon the first data collection experience, we worked with Purple Wave to design 13 questions
(Appendix 4a: Questionnaire Design) that could potentially extract as much information from the
images as possible. Questions involve yes-no questions to determine background, quantitative
annotations such as rust extent, brightness of color, dirt level and etc. We conducted a sample
trial by sampling 100 images from an image set and getting 3 workers to work on each image.
The sample trial cost $83.94 in total. We designed the MTurk interface like below (​Figure 4​),
and also provided detailed guidance for workers to understand (Appendix 4b: Detailed
instructions for workers to label bucket rust extent) what different extent of brightness/rust/dirt
level looks like by providing sample images.

Figure 4: MTurk question interface

To prevent illegal selections, we designed the survey using radio buttons and javascript hide
elements, which significantly reduced the number of illegal answers. We used majority votes to
preprocess the data: if 2 workers have the same labeling, we pick them as the truth one.We

have 96 rows of legal annotations since one of the 13 questions designed is a 3-choice
question, and we happened to have annotators pick three different answers for 4 images.
Therefore, we excluded the controversial images, which left us with 96 image annotations.
We also explored the numerical variables’ annotation quality in Appendix 4c: MTURK
Annotation Quality. In the later section, we explore the effect of adding mturk data in the model
to investigate if features in images are important.

4. Multi-layer Price Prediction Models

1) Baseline Price Prediction Model & Significance Tests
We started with using multiple linear regression (MLR) as our baseline model as well as a tool
for checking significance of added features. Because firstly, it is highly interpretable and
secondly significance tests could be implemented in the regression setting. In addition, a H2O
random forest is fine-tuned to improve the prediction accuracy. As we mentioned in Appendix 1:
Numerical Data, we found a log relationship between predicted variables and different
predictors, so we perform a log transformation on Hours_Final, Winning_Bid and Age_at_Sale.
Categorical variables are one-hot encoded in regression models.

We conducted a series of model comparisons in Table 2. Note that models colored in purple
were trained and tested with the dataset of sample size 6167 (tabular information alone);
Models colored in yellow were trained and tested with the dataset of sample size 96 (joined with
MTURK).

2) Tabular data + extracted features (sample size: 6167):
By adding features one at a time, we can check the significance of added predictors and
observe the improvements of metrics in Table 2 (increase in R-squared and decrease in MAE,
concepts explained in detail in the caption). By performing the nested-f test on each new
feature, we found that all features except tire and transmission sentiment are significant. In
addition, with all features included, we have a multiple R-squared of 0.436 and MAE of $3926
for this baseline regression model.

Next, H2O random forest (h2o_drf) is implemented to increase the predictability power. One of
random forest (rf)’s advantages over linear regression is that rf is not affected by multicollinearity
between features. In addition, rf takes in account nonlinear transformations and considers
interactions without specifying them due to its tree-based nature. H2O drf is preferred in this
scenario because categorical variables are not one-hot encoded like in many other packages
[4]. One-hot encoding degrades the performance of tree-based models since it creates many
independent binary variables, which during splitting are disadvantaged over continuous
variables.

After fine-tuning (grid search over hyperparameters), H2O random forest model achieved a
MAE of $3391, which outperforms the MAE of baseline regression model ($3902)
[hyperparameters: ntrees=100, max_depth=10, sample_rate = 0.8, mtries=3]. This shows that
during this stage of modelling, our price prediction error is around $3391 on average where the
winning bid ranges from $5000 to $70,000.

3) Tabular data + extracted features + MTURK annotations (sample
size: 96)
Since we’ve collected 96 rows of annotations for images, we also joined the original data with
the newly collected data to see the performance of regression models. In Table 2, we can see
that using multiple linear regression with 96 rows of data, we could achieve a multiple R-square
of 0.802 using all data, which is a significant increase in R-square (0.431) by using tabular data
alone. However, due to the small sample size and substantial amount of features, there is an
overfitting problem in the models, resulting in unstable MAE. This instability is due to the small
sample size relative to the number of predictors as well as regression’s incapability of dealing
categorical variables with many levels. We can have as many as 49 predictors when
implementing one-hot encoding in regression while having 96 data points. Therefore, we’ll try to
use a more powerful model to perform fine tuning. Nevertheless, we also suggest Purple Wave
to collect more annotations in the future to test mturk features' significance with a higher
confidence level.

We experimented with H2O random forest for this small dataset. After fine-tuning, we achieved
a MAE of $2978, which shows the effectiveness of annotations (additional features) in price
prediction.

Model Parameters Sample
Size

R^2 MAE Nested-f test
(significance)

MLR Hours_final, age_at_sale 6167 0.392 4076 *

MLR Hours_final, age_at_sale, ​parts_sentiment 6167 0.394 4062 Engine & Bucket
Sentiment

MLR Hours_final, age_at_sale,
colorfulness_score

6167 0.396 4047 *

MLR Hours_final, age_at_sale,
month_of_sold_date

6167 0.401 4066 *

MLR Hours_final, age_at_sale, ​make 6167 0.430 3926 *

MLR Hours_final, age_at_sale, ​make,
month_of_sold_date, colorfulness_score,
parts_sentiment

6167 0.436 3902 *

H2O_DRF Hours_final, age_at_sale, ​make,
month_of_sold_date, colorfulness_score,
parts_sentiment

6167 0.489
(MSE)

3391

MLR Hours_final, age_at_sale 96 0.431 5384

MLR Hours_final, age_at_sale, ​make 96 0.570 4998

MLR Hours_final, age_at_sale, ​make, mturk 96 0.633 Unstable Because of Overfitting

(Linear regression is not good at
dealing with one-hot encoded
categorical variables. In addition,
the total number of predictors
adds up to 49 when one-hot
encoded and 19 when label
encoded. 96 is too small a
sample size to test significance
with high confidence level .)

MLR Hours_final, age_at_sale, ​make, mturk,
parts_sentiment, colorfulness

96 0.676

MLR Hours_final, age_at_sale, ​make, mturk,
parts_sentiment, colorfulness
, month_sold

96 0.802

H2O_DRF Hours_final, age_at_sale, ​make, mturk,
parts_sentiment, colorfulness
, month_sold

96 0.850
(MSE)

2978

Table 2. Model Comparison

● Models colored in purple were trained and tested with dataset of sample size 6167
(tabular information alone); Models colored in yellow were trained and tested with
dataset of sample size 96 (joined with MTURK)

● R-squared, denoted by 1-RSS/TSS where RSS is the residual sum of squares and TSS
is the total sum of squares, represents the proportion of the variance for a dependent
variable that's explained by an independent variable or variables in a regression model​[5]

● Mean absolute error (MAE) denotes the average of all absolute errors.
● Nested-f test is used to test if multiple coefficients equal zero or not. ‘*’ in the plot above

represents that the variables added are significant; ‘engine & bucket’ means that for
machine specs’ sentiment scores, only sentiments of engine and bucket are significant.

● Metrics above are all calculated using the test set (hold-out set).

4) Sentence Embedding for Text Data
In order to make use of ‘details_remaining’ column, which is the rest of information that doesn’t
belong to “Engine”, “Tires”, “Transmission” and “Bucket”, we decided to generate sentence
embeddings for text and use a regression in pytorch framework to test its effectiveness.. The
reason we do not use sentiment analysis again is that texts coming from rbauction (one of the
four sources), which counts for 60% of all data, are concatenations of abbreviations of machine
specs. Text from other sources are long comments given by heavy equipment professionals.
We trained corpus-specific word embeddings using fasttext and fed sentence embeddings as
input vectors. For sentence embedding alone as input features, we got an R-square of 0.42,

while tabular feature alone has R-square of 0.41. The two combined achieved an R-square of
0.60. The explained proportion from R-square tells that sentence embedding can improve price
prediction but still interpretability of sentence embedding is a problem yet to be solved.

5) Transfer Learning for Images
We show in the previous section that it is difficult to extract interpretable image features through
machine learning without the guidance of human knowledge. Thus, we decided to use images
to predict price directly. Specifically, we decide to use transfer learning to solve this problem.
Transfer learning means fine-tuning the weights of a pre-trained model to our task of price
prediction. We compare the performance of different pre-trained models (see details in
Appendix) and decide to use ResNet152 as our image model because it has the best balance
between price prediction performance and training time complexity.

The pretrained ResNet152 model is originally used in classification tasks, predicting the class of
the images (e.g. whether the image has a cat or dog). Our task, however, is a regression
problem, predicting the final auction price. To address the difference, we split the original
ResNet152 model into two different parts. The first part contains all the convolutional layers,
pooling layers and activation layers and it takes an image as an input and outputs an array of
uninterpretable features. We keep the structure of this part unchanged. The second part
contains all the fully-connected (dense) layers and it takes the output array of the first part and
produces a final output for this model. We modify the second part to produce a price rather than
the class. Finally we concatenate these two parts back together and train these two parts at the
same time.

6) Training the Multi-layer Price Prediction Model
Next, we need to implement a way to incorporate the baseline features, text information and the
uninterpretable image features together in predicting auction price. As mentioned before, all
these information are array values, so we concatenate them together into a long array. Then we
extend the fully-connected layers so that it could take this informative long array as an input and
output the price we need. (Figure 5)

Figure 5 : Structure of the multi-layer price prediction model.

We also conduct performance benchmarks on different settings of hyperparameters (more
details in Appendix). Hyperparameters are parameters that affect prediction performances and
are manually chosen by humans but not automatically learned by machine. We finally choose
these hyperparameters set in our final model displayed in Table 3.

Hyperparameter Values

Pretrained image model ResNet152

Fine-tuning CBs CB3+

Optimizer Stochastic Gradient Descent

Loss function Mean Square Error (MSE)

Fully-connected structure (2308, 32, 1)

Activation functions in fully-connected layers Hyperbolic tangent

Training epochs 200

Starting learning rate 0.001

Scheduler Reduce learning rate on plateau

Table 3: Hyperparameters combination for the final model. Each training epoch loops through
the whole training dataset. Learning rate shows how fast the model is learning from training
data. The scheduler we choose will reduce learning rate when performance on validation set

stops improve so to improve the overall performance. Meaning of other hyperparameters could
be found in Appendix 3

5. Model Performance Evaluations

1) Feature Importance

Figure 6: Feature importance generated by Random Forest Regressor

Dark purple: Original tabular data; Light purple: MTURK data; Light pink: Feature extracted

From the random forest regresor’s feature importance plot, we could see that age_at_sale is the
most important predictor, followed by month_sold, hours_final, make and paint_brightness (top
5 predictors). In Appendix 5: Categorical Feature Importance Breakdown, importance of
subcategories of categorical variables are shown. For instance, holding other variables
constant, equipment sold in October tends to have a higher selling price than equipment sold in
other months. One of the reasons is that October is a peak season for sales. Also, Caterpillar is
a good/much valued brand that has equipment's sales price higher than other brands’
equipments’ sales price. It also might be due to the imbalance of categories in this dataset as
shown in the exploratory analysis section.

In general, text information has less predictive power than image features, than primary
predictors such as age_at_sale (text < image < primary predictors). But we can’t deny the
importance of features shown in Figure 6 and Table 2. Therefore, we suggest Purple Wave to
start collecting relevant data (mturk survey questions) in the future to train a better model.

2) Prediction Accuracy
We compare our predictive prices with the ground truth price on the validation set. We use 3
metrics, loss function (MSE in log scale), Mean Absolute Error (MAE) in US Dollars and Mean
Absolute Percentage Error (MAPE) in percentage scale, to measure our prediction
performance. The results are shown in the table.

Variables used Loss (log-scale MSE) MAE (original scale) MAPE

Baseline / 4076 /

+ Image
(colorfulness
score)

0.0331 2618.11 19.34 %

+ Text
embeddings

0.0332 2541.85 19.06 %

+ Text
sentiments

0.0323 2598.10 19.07 %

Table 4: Benchmarking the same model with different parameters used. Baseline contains all

the variables in the original tabular. Model in each row utilizes all the variables shown above the
current row.

 Loss (log-scale MSE) MAE (original scale) MAPE

Training Set 0.0236 2243.50 15.83 %

Validation Set 0.0317 2541.85 19.06 %

Table 5: Prediction accuracy on training and validation set.

All metrics have similar values between training and validation. This indicates that we are not
suffering from overfitting, and the model has consistent generalization performance. The MAE
shows that our price prediction error is around $2600 (19 %) on average.

3) Visualizations
In addition to price prediction, we also want our model to have interpretability. We already gave
interpretation on the tabular features showing which contribute more to the final price. As for
images, it is difficult to derive the same quantitative features importance rank. Instead we want
to qualitatively visualize the attention of our network. The network attention are areas that have

great impact on producing the final output (price). In this way, we could show which areas are
driving the model towards a higher/lower final price.

The first algorithm we implement is called Class Activation Maps (CAM). It is originally used in
classification problems, visualizing which areas are driving the network in predicting the given
class. Our network, however, is a regression model. We modify this algorithm to fit our purpose.
Some sample results are shown in the Figure 7 below.

Figure 7: A sample of CAM visualization. The right is the CAM visualization, showing the
network attention on the left original image. The greener the areas, the more positive attention
the network is giving to. The redder the areas, the more negative attention the network is giving
to. The more positive/negative attention the area has, the more it drives up/down the final price.
Our model favors a black cabin frame, clean body color, clean background and dislikes the rusty
bucket and conjunction parts.

The second algorithm we implement is called Guided Saliency Maps. Similar to CAM, Guided
Saliency Map is also originally used in classification problems. We modify the algorithm to fit our
regression model. It shows the pixel-wise gradients of the ground truth price with respect to the
input images. A sample is shown in Figure 8 below.

Figure 8: A sample of Guided Saliency Map visualization. Counting clockwise from the top left
image, the first shows the original image. The second shows a monochromatic gradient, which
is taking the pixel-wise max gradient values from the gradients in RGB channels in the third
colorful image. The fourth/fifth image only keeps the negative/positive gradients from the second
image. The brighter or more colorful the pixels, the more impact of the pixels on the output
price.

Guided Saliency Map is calculated pixel-wise with the same shape of the input images. It
contains detailed information on network attention, but the visualization might be too detailed
and lose focus. CAM, on the other hand, first separates the input images into 7 by 7 small
square areas and then calculates the attention on each small area. This makes the output
visualizations look like patches of blue and red color. By putting these two techniques together,
we could better understand where the network is paying attention to.

Neural networks are always referred to as a black box, because they produce an output from a
given input without an explanation. Thus visualizing neural networks is always a hard research
question. We use attention to visualize the important part of the images as a way to achieve the
feature importance in the tabular data. It is a qualitative approach but not a quantitative

approach. Thus, these visualizations require further professional investigation to see if
consistent patterns exist within.

Finally, we incorporated visualizations above in an app deployed on heroku, named as skid
steer price prediction [​https://skidsteer-interpret.herokuapp.com/​].

6. Discussion
We believe using MTurk, or any other human annotation approach, is the easiest and most
cost-effective way to gather interpretable (thus actionable) and significant features. A
well-designed MTurk questionnaire could make as high as 96% of the answers useful, with the
cost of less than 0.9 USD per image. In addition, people with professional knowledge about
pre-owned skid steer could then justify those answers from MTurk by sampling. Thus it results in
both authentic and cost-effective feature labels.

We see a great performance improvement after adding raw images in our price prediction
model, but this effect diminishes when adding some other new features (comment sentiment
and embeddings). One hypothesis is that the network tends to weigh a lot on the images (2048
out of 2163 features are for images). A possible solution for this is to add another
fully-connected layer to the 2048 image features before the concatenation (such as reducing
from 2048 to 512). This will increase the model complexity and thus make it might need more
data to train on.

For the analysis on feature importance, we find that vehicle paint and cleanliness have
significantly great impact on predicting price. However, we lack a constant interpretation on
images with the two proposed attention methods. Researchers have been using these methods
on classification problems but not regression problems like price prediction. This migration of
problem settings could have a huge impact on the performance of these two algorithms. Thus,
we suggest looking at these visualizations and recording their interpretation one by one. Then
we could compare (or count) the frequency for each type of interpretation, to finally discover a
constant understanding of the model’s preference.

7. Citations
[1]. Benedikt Schnurr, ​The effect of context attractiveness on product attractiveness and product
quality: the moderating role of product familiarity​, 09 August 2016

[2]. David Haslera and Sabine Susstrunk, ​Measuring colourfulness in natural images​, 2003

[3] C.J.Hutto, Eric Gilbert, VADER: A Parsimonious Rule-based Model for Sentiment Analysis of
Social Media Text, 2014

https://skidsteer-interpret.herokuapp.com/

[4]. Nick Dingwall, Chris Potts, Are categorical variables getting lost in your random forest,
https://roamanalytics.com/2016/10/28/are-categorical-variables-getting-lost-in-your-random-fore
sts/

[5]. Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, An Introduction to
Statistical Learning with Applications in R

[6]. Julianne Alyson I. Diaz, Manuel I. Ligeralde Jr., John Anthony C. Jose, etc., ​Rust Detection
Using Image Processing via MATLAB​, 2017.

[7]. Margarita R.Gamarra Acosta, Juan C.Vélez Díaz and Norelli Schettini Castro, ​An innovative
image-processing model for rust detection using Perlin Noise to simulate oxide textures, ​2014.

[8]. Jason Yosinski, Jeff Clune, Yoshua Bengio, etc., ​How transferable are features in deep
neural networks?​, 2014.

[9] ​Stéphane Lathuilière​, ​Pablo Mesejo​, ​Xavier Alameda-Pineda​, ​Radu Horaud​,A
Comprehensive Analysis of Deep Regression, 2019

8. Appendix

1) Exploratory Data Analysis

We explored the relationships between the winning bid and predictors from tabular data.
Missing values and data anomaly problems are dealt with in this process. The following is
organized in the order of missing values, numerical, categorical and text data.

● Missing Value in Tabular Data

For various add-ons such as ‘bucket’, ‘engine’, ‘tires’, etc, they all have missing data. Their
missingness is majorly due to different data sources’ ways of annotation. Some websites only
write very specific comments in a case-by-case fashion; whereas the others put the category of
add-ons in the column. Number of null values in variables are given in ​Figure 9​.

https://roamanalytics.com/2016/10/28/are-categorical-variables-getting-lost-in-your-random-forests/
https://roamanalytics.com/2016/10/28/are-categorical-variables-getting-lost-in-your-random-forests/
https://arxiv.org/search/cs?searchtype=author&query=Lathuili%C3%A8re%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Mesejo%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Alameda-Pineda%2C+X
https://arxiv.org/search/cs?searchtype=author&query=Horaud%2C+R

Figure 9. Number of null values in variables

Bucket has a more complicated situation. Null value can either be caused by skid steer itself
lacking this bucket or incomplete annotations. According to human observation, there are
situations that although tabular data has a null value in ‘Bucket’, associated image has a bucket
on it and vice versa. We’ll talk about how to deal with the missing value in exploratory analysis:
text and categorical variable section.

● Numerical Data

 Figure 10. Exploratory Plots of Winning Bid vs. Hours Final

Plot on the left-hand side shows that there are 3 outliers with more than 40,000 hours listed in
the meter. When we removed the 3 outliers, we have the plot on the right-hand side.

From ​Figure 10​, we can see that there are outliers with more than 40,000 hours listed in the
meter. Since the majority of prediction lies in the range of 0 to 40,000 hours, we chose to
exclude the outliers and saw a trend of exponential/quadratic drop (variable needs to be
transformed). We can see a similar relationship between winning bid and age of the skid steer in

Figure 11​. In case of multicollinearity, we derived the correlation between numerical variables
and found there is a correlation of 0.198 between Hours Final and Age at sale, which was
acceptable.

Figure 11. Winning Bid vs.Age at sale Figure 12. Winning Bid vs. Colorfulness Score

We then explored the relationship between the winning bid and the colorfulness score. From
Figure 12​, we can’t see a significant trend between dependent and independent variables due
to the fact that this is a marginal plot which isn’t conditioned on other predictors. We’ll figure out
the influence of colorfulness to price when putting it into a baseline regression model.

● Categorical Data

Figure 13. Boxplot of Winning Bid vs. Make of the Skid Steer

Boxes represent data (winning bids of different skid steers of a particular make) within 1st and
3rd quartiles while black points are outliers.

From ​Figure 13​, we can see the impact of brand premium to winning bid. We found that brands
such as "Wacker Neuson" have a high average winning bid, but it has a small amount of data
points compared with common brands such as "Caterpillar","Bobcat" and "Deere". Common
brands have high variance, which means their prices depend more on the different conditions of
skid steers. Other brands on the right side of the plot, such as “New holland” don't have a lot of
data points.

Figure 14. Winning Bid vs. Bucket

We treated “Bucket” as a binary predictor and made an assumption that labelled data had a
bucket whereas null data didn’t. According to the observation in the missing data section, this is
not a 100% valid assumption. We’ll be using MTurk to get more accurate data on add-ons. Also,
this is the only column that can be treated as a categorical variable with minimal cleansing.
Because it has the fewest missing values among all other categories: tires, transmission, etc
and other categories can’t be treated as a with/without problem. From Figure 14, we can see
that the variance of “true” and “false” categories are almost the same, but “true” has more high
winning bid outliers. We’ll explore the possibilities of treating “Bucket” as a multi-category
variable in the future.

● Text data
“Engine”, “Tires” and “Transmission” suffer from the same problem. They all have more than 20
major categories whereas almost half of the labels only appear once. In addition, their columns
are really sparse. We take “Engine” as an example. When you rank the subcategory of engine
in descending order (​Figure 15 A​), you can see some major categories. We took a step further
to see labels with more than 100 characters (​Figure 15 B​). They are essentially detailed
descriptions of the state of the engine. Comments with green underline are positive while red
underline represents negative. An alternative way to deal with text data is using text analysis to
extract sensitive words like “damage”, “new”, “missing”, “changed”, etc and give them a positive
or negative value. We will try to take care of some interesting cases such as skid steer with
great age of sale but “damaged engine” for instance.

Figure 15. A. Major categories of ‘Engine’

Figure 15. B. Sample of ‘Engine’ comments (more than 100 characters)

2) Other Interesting Feature Engineering Approaches

● Glass Detection
From the windowshield's transparency/defect extent, intuitively, we can also tell degree of use of
a skid steer. However, prior research focused on detecting breaches, dents, abrasions of
products on the assembly line. Researchers used essentially enlarged, fine-grained images with
little or no confounding factors (for instance, background), which are very different from our
problem. In addition, glass detection needs a separate model. Using two models without high
true positive rates to detect glass defect is not a feasible way in our opinion. Therefore, we
moved on to “rust detection”, which has more established research results.

● Corrosion Detection through Image Processing
Skid steer usually has a bucket attached to its front, which is used for moving dirt around.
Different skid steers have buckets with different conditions, such as different levels of rust
(corrosion) and various amounts of dirt covered on the exterior. This feature, however, is not
reflected in the tabular data, but thought to be important in affecting the final price.

Due to the Nature of lacking labeled images in our data, we first think about using image
processing techniques to extract corrosion features. Different researchers have done several
experiments on this topic. Diaz ​[6]​ introduced an image processing pipeline, including
thresholding (identify red color pixels above some threshold), edge detection (identify textures of
rust) and segmentation algorithms (calculate the amount of rust) that could output a binary
outcome of whether this image contains rust or not. Acosta ​[7]​ proposed another image
processing pipeline for detecting rust zones. They utilized Perlin Noise to simulate an extreme
rusted version of the input rust image. Then they feed both of the simulated and real images to

a filtering and feature extractor. Finally, they use the Bayes decision function to classify images
into a binary output, rust or no rust.

These two approaches share the same pros and cons. They only require a small amount of
labeled data (20 labeled images in Diaz’s experiment) to reach a reasonably good result. Also,
the thresholding (or filtering) and edge detection (or feature extractor) are highly tunable and
interpretable. However, they all produced a binary output, which might not be enough for our
use case. Most of the auction equipment are pre-owned and they usually have rust on them, so
these models might produce imbalanced feature scores. Also most of the images used in these
models contain little or no surroundings that are irrelevant to rust prediction, but we have
various background objects in our images, making it harder to correctly capture rust and ignore
the noise from the background. Last but not least, from a practical point of view, these methods
do not have Python implementation, so we need extra coding efforts to implement them.

● Corrosion Detection through Transfer Learning
To compensate for the issue of lacking labeled images, we also considered using transfer
learning. The idea is to use a small amount of labeled image to adapt a pre-trained model to our
task of corrosion detection.

The choice of model depends on the final task, and few papers talked about this. As for the
training architect and structure of transfer learning, Yosinski (2014)​[8]​ set up several experiments
for comparison. They quantitatively proved that transfer learning of images classification works
great for pretrained models (features extractor) on new data. Especially, a fine-tuned transfer
learning model, even if only fine-tuned the last layer, works almost always better than a frozen
transferred model, as long as transferring to a newly unseen dataset. However, there is also an
accuracy degradation when transferring to a new target task. In this case, fine-tuning more
layers could help alleviate this effect. This paper offers a general guidance of training transfer
learning models.

We used a pre-trained VGG16 model as our feature extractor. Although it was not the most
accurate image classification model for now, it has a simple structure and is one of the most
widely used one for transfer learning. We changed the dense layer to match our task and
fine-tuned all the dense layers and the last convolution layer (Conv 5-3) (see ​Figure 16​). We
also transformed images to match the input assumptions of the original VGG16 model and
augmented images using flipping, rotating and color jittering to account for different shooting
angles and rust color.

Figure 16. Structure of VGG16 model

We performed transfer learning on 2 different annotated dataset, 100 images with 5-point-scale
of rust and 218 images with 3-point-scale of rust. The best accuracy on test set is 32% and 43%
respectively.

3) Model Benchmarks
We benchmarked the performance of different models or different hyperparameter sets. Except
for the currently testing hyperparameter, we control every other hyperparameter the same. By
default we use a pretrained ResNet152 model, trained on 70% of all the preprocessed data and
validated on the rest 30%. We train for 50 epochs, with learning rate starting with 0.001 and
diminishing by 0.1 for every 10 epochs. We use mean square error as the loss function and
Stochastic Gradient Descent (SGD) as the optimizer. We only use one fully-connected layer to
predict price.

● Comparing Different Pre-trained Models
Transfer learning requires us to choose a pre-trained model and adapt it to our use case. This
table shows the performance comparison between different image feature models. Other
hyperparameters are controlled to be the default value. We finally choose to use ResNet152 as
our pretrained

Pretrained Models Loss (MSE) Mean Absolute Error Training Time

VGG19_bn 0.055372 3466.98 2.38

ResNeXt50 0.038298 2840.69 1.72

ResNeXt101 0.034485 2674.65 4.32

ResNet18 0.045419 3120.65 1.00 (39m 58s)

ResNet50 0.036007 2710.06 1.40

ResNet152 0.034755 2697.24 2.78

Table 6: Performance comparison between various pre-trained models. Loss is the mean
square error of the price in the log-scale. Training time shows the relative time needed for
training each model, and the absolute time 39m 58s may differ among different hardwares.

● Comparing Different Blocks for Fine-tuning
Fine-tuning a block means that the values of the parameters (weights) in this block will be
trained (optimized) to fit into our use case. The pretrained ResNet152 model contains 4
convolutional blocks (CB). We benchmarked the performance for fine-tuning different numbers

of these blocks. Other hyperparameters are controlled to be the default value. Our findings
coincide with Lathuilière (2018)​ [9]​, showing that only fine-tuning the last 2 convolutional blocks of
the pre-trained ResNet model would have the best performance.

Fine-tuning CBs Loss (MSE) Mean Absolute Error

All 0.034755 2697.24

CB3+ 0.034420 2681.50

CB4+ 0.036643 2769.05

Table 7: Performance comparison between various numbers of blocks for fine-tuning. CB4+
means only fine-tuning the last convolutional block and CB3+ means fine-tuning the last two
convolutional blocks for the pretrained ResNet152 model.

● Comparing Different Fully-connected Layer Structures
Our goal is to predict price, which is a numerical value with only 1 dimension. We use different
sets of fully-connected layers to transform previous network information, with 2053 dimensions,
to 1 dimensional price. By default we only use one fully-connected layer to predict price, but this
is not complex enough to the price prediction task. Thus we explore the possibilities of using
multiple fully-connected layers with various numbers of hidden nodes. We also try adding a
dropout layer (DO) to avoid overfitting. We control all other hyperparameters to be the default
values, except for only fine-tuning the last 2 convolutional blocks (CB3+). Results show that
adding more complexity could greatly improve the performance, and using only 32 hidden
nodes will be the best one.

Fully-connected Structure Loss (MSE) Mean Absolute Error

(2053, 1) 0.035242 2682.30

(2053, 32, 1) 0.032363 2570.16

(2053, 64, 1) 0.032585 2585.95

(2053, 256, 1) 0.032884 2612.20

(2053, 32, DO, 1) 0.035349 2683.15

(2053, 64, DO, 1) 0.034404 2661.82

(2053, 256, DO, 1) 0.033620 2653.15

(2053, 256, 32, 1) 0.033229 2615.56

(2053, 256, 64, 1) 0.033109 2631.03

Table 8: Performance comparison among different fully-connected layer structures. (2053, 1) is
the baseline model where only one fully-connected layer is used. (2053, 32, DO, 1) means two
fully-connected layers are used and with 32 hidden nodes and a dropout layer in between.

● Comparing Different Optimizers and Loss Functions
Optimizers are algorithms used to optimize model parameters (weights) during training. Loss
functions are the target value that optimizers optimize on. We benchmarked the performance of
using different optimizers among SGD, Adam and Adad and different loss functions among
Mean Square Error (MSE), Mean Absolute Error (MAE) and Huber loss (HUB). Other
hyperparameters are controlled to be the default value. Results show that using SGD optimizer
and MSE loss function will have the best marginal performances.

Optimizers Loss (MSE) Mean Absolute Error

SGD 0.035359 2690.22

Adam 0.048680 3180.59

Adad 0.050003 3230.64

Table 9: Performance comparison between different optimizers.

Loss Functions Loss (MSE) Mean Absolute Error

MSE 0.035359 2690.22

MAE 0.151675 2753.34

HUB 0.018265 2736.53

Table 10: Performance comparison between different loss functions. Mean Square Error (MSE)

● Comparing Different Activation Functions
Activation functions are the non-linearity parts in neural networks. We benchmarked the
performance of using different activation functions in the fully-connected layers. We test sigmoid
function (sig) and hyperbolic tangent function (tanh). Other hyperparameters are controlled to be
the default value. Results show that hyperbolic tangent function outperforms sigmoid with a
small margin.

Activation Functions Loss (MSE) Mean Absolute Error

Tanh 0.032363 2570.16

Sigmoid 0.033578 2657.56

Table 11: Performance comparison between Sigmoid and Tanh activation functions.

4) MTURK Survey Design

4a: Questionnaire Design

1. Does this equipment have a bucket?

a. If “yes”: Use a scale of 0-10 to describe how much rust it has.

Click on “View instructions” for example of different scale of rust.

b. If “no”: jump to the second question.

2. Please look at the background, is it a sunny weather? (Yes/No)

3. Please look at the background, is there blue sky in the image? (Yes/No)

4. Please look at the background, is there green pasture or grass on the ground? (Yes/No)

5. Please look at the background, is it a cloudy weather? (Yes/No)

6. Please look at the background, is it a snowy(foggy) weather? (Yes/No)

7. Please look at the background, is the image taken outdoor? (Yes/No)

8. Use a scale of 0-10 to describe the conditions of equipment’s brand label. 0 means the
poorest conditions (scratchiness, faded color, etc.) and 100 means great as new.

Click on “View instructions” for example of different scale of scratchiness.

(Slider value)

9. Use a scale of 0-10 to describe the degree of tire situation. 0 means totally worn out and
100 means totally new tire.

Click on “View instructions” for example of different degree of tire wear.

(Slider Value)

10. Use a scale of 0-10 to describe the brightness of paint. 0 means totally faded and 100
means bright as new.

We’ll provide standard color of yellow (F0B823), white and green in the survey.

(seems like can only get an approximate of sunbelt green and bobcat white)

(Slider Value)

11. Use a scale of 0-10 to describe the brightness/blackness of black cabin frame on the top of
vehicle. 0 means totally faded and 100 means bright as new.

12. Use a scale of 0-10 to describe how clean is the skid steer in general. 0 means fully
covered with dirt and 10 means totally clean as new.

Click on “View instructions” for example of different dirt levels.

4b: Detailed instructions for workers to label bucket rust extent.

Figure 17: Detailed instructions for workers to label bucket rust extent.

4c: MTURK Annotation Quality

Figure 18: Question numbers correspond to the questionnaire design in 4a. Each standard
deviation is calculated from 3 different answers per question per image, and the distribution is
calculated upon the 100 images per question. The middle graph in the right column centers
more towards the right side, meaning that people have more divergent opinions about this
question (the amount of rust on the body of skid steer).

5) Categorical Feature Importance Breakdown:

1) Month_of_sold_date

Figure 19: Results of Multiple Linear Regression on (Y: winning_bid vs X: hours_final,

age_at_sale, month_sold)

Based on the model's coefficients with month’s p-value lower than 0.05 being chosen, we
conclude that October and April have a positive influence on price while January and
September have a negative influence on price.

2) Make

Figure 20: Brand’s influence towards price prediction.

Color orange represents positive influence (brand’s premium) while color yellow represents
negative influence. This chart is based on the following regression model's coefficients with
brands p-value lower than 0.05 being chosen.

Figure 21: Results of Multiple Linear Regression on (Y: winning_bid vs X: hours_final,

age_at_sale, Make)

